direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C7×C22.29C24, C14.1522+ 1+4, (C2×C28)⋊26D4, C4⋊D4⋊6C14, C4⋊1D4⋊5C14, C42⋊6(C2×C14), C4.16(D4×C14), C22≀C2⋊3C14, (C4×C28)⋊40C22, C4.4D4⋊6C14, C28.323(C2×D4), (C22×D4)⋊7C14, (D4×C14)⋊36C22, C24.19(C2×C14), (Q8×C14)⋊51C22, C22.21(D4×C14), C42⋊C2⋊10C14, (C2×C14).355C24, (C2×C28).664C23, (C22×C28)⋊48C22, C14.190(C22×D4), C23.9(C22×C14), C2.4(C7×2+ 1+4), (C23×C14).16C22, (C22×C14).91C23, C22.29(C23×C14), (C2×C4)⋊4(C7×D4), (D4×C2×C14)⋊22C2, C4⋊C4⋊14(C2×C14), C2.14(D4×C2×C14), (C2×C4○D4)⋊4C14, (C2×D4)⋊4(C2×C14), (C14×C4○D4)⋊20C2, (C7×C4⋊D4)⋊33C2, (C7×C4⋊1D4)⋊16C2, (C7×C4⋊C4)⋊70C22, C22⋊C4⋊4(C2×C14), (C22×C4)⋊8(C2×C14), (C2×Q8)⋊11(C2×C14), (C7×C22≀C2)⋊13C2, (C7×C4.4D4)⋊26C2, (C2×C14).417(C2×D4), (C7×C42⋊C2)⋊31C2, (C7×C22⋊C4)⋊39C22, (C2×C4).22(C22×C14), SmallGroup(448,1318)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C7×C22.29C24
G = < a,b,c,d,e,f,g | a7=b2=c2=d2=f2=g2=1, e2=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, ede-1=gdg=bd=db, fef=be=eb, bf=fb, bg=gb, fdf=cd=dc, ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >
Subgroups: 610 in 334 conjugacy classes, 162 normal (26 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C7, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C14, C14, C14, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C28, C28, C2×C14, C2×C14, C2×C14, C42⋊C2, C22≀C2, C4⋊D4, C4.4D4, C4⋊1D4, C22×D4, C2×C4○D4, C2×C28, C2×C28, C2×C28, C7×D4, C7×Q8, C22×C14, C22×C14, C22×C14, C22.29C24, C4×C28, C7×C22⋊C4, C7×C4⋊C4, C22×C28, C22×C28, D4×C14, D4×C14, D4×C14, Q8×C14, C7×C4○D4, C23×C14, C7×C42⋊C2, C7×C22≀C2, C7×C4⋊D4, C7×C4.4D4, C7×C4⋊1D4, D4×C2×C14, C14×C4○D4, C7×C22.29C24
Quotients: C1, C2, C22, C7, D4, C23, C14, C2×D4, C24, C2×C14, C22×D4, 2+ 1+4, C7×D4, C22×C14, C22.29C24, D4×C14, C23×C14, D4×C2×C14, C7×2+ 1+4, C7×C22.29C24
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)
(1 47)(2 48)(3 49)(4 43)(5 44)(6 45)(7 46)(8 110)(9 111)(10 112)(11 106)(12 107)(13 108)(14 109)(15 22)(16 23)(17 24)(18 25)(19 26)(20 27)(21 28)(29 40)(30 41)(31 42)(32 36)(33 37)(34 38)(35 39)(50 74)(51 75)(52 76)(53 77)(54 71)(55 72)(56 73)(57 68)(58 69)(59 70)(60 64)(61 65)(62 66)(63 67)(78 102)(79 103)(80 104)(81 105)(82 99)(83 100)(84 101)(85 96)(86 97)(87 98)(88 92)(89 93)(90 94)(91 95)
(1 35)(2 29)(3 30)(4 31)(5 32)(6 33)(7 34)(8 21)(9 15)(10 16)(11 17)(12 18)(13 19)(14 20)(22 111)(23 112)(24 106)(25 107)(26 108)(27 109)(28 110)(36 44)(37 45)(38 46)(39 47)(40 48)(41 49)(42 43)(50 67)(51 68)(52 69)(53 70)(54 64)(55 65)(56 66)(57 75)(58 76)(59 77)(60 71)(61 72)(62 73)(63 74)(78 95)(79 96)(80 97)(81 98)(82 92)(83 93)(84 94)(85 103)(86 104)(87 105)(88 99)(89 100)(90 101)(91 102)
(1 102)(2 103)(3 104)(4 105)(5 99)(6 100)(7 101)(8 71)(9 72)(10 73)(11 74)(12 75)(13 76)(14 77)(15 61)(16 62)(17 63)(18 57)(19 58)(20 59)(21 60)(22 65)(23 66)(24 67)(25 68)(26 69)(27 70)(28 64)(29 85)(30 86)(31 87)(32 88)(33 89)(34 90)(35 91)(36 92)(37 93)(38 94)(39 95)(40 96)(41 97)(42 98)(43 81)(44 82)(45 83)(46 84)(47 78)(48 79)(49 80)(50 106)(51 107)(52 108)(53 109)(54 110)(55 111)(56 112)
(1 50 47 74)(2 51 48 75)(3 52 49 76)(4 53 43 77)(5 54 44 71)(6 55 45 72)(7 56 46 73)(8 82 110 99)(9 83 111 100)(10 84 112 101)(11 78 106 102)(12 79 107 103)(13 80 108 104)(14 81 109 105)(15 93 22 89)(16 94 23 90)(17 95 24 91)(18 96 25 85)(19 97 26 86)(20 98 27 87)(21 92 28 88)(29 68 40 57)(30 69 41 58)(31 70 42 59)(32 64 36 60)(33 65 37 61)(34 66 38 62)(35 67 39 63)
(8 28)(9 22)(10 23)(11 24)(12 25)(13 26)(14 27)(15 111)(16 112)(17 106)(18 107)(19 108)(20 109)(21 110)(50 74)(51 75)(52 76)(53 77)(54 71)(55 72)(56 73)(57 68)(58 69)(59 70)(60 64)(61 65)(62 66)(63 67)(78 95)(79 96)(80 97)(81 98)(82 92)(83 93)(84 94)(85 103)(86 104)(87 105)(88 99)(89 100)(90 101)(91 102)
(1 35)(2 29)(3 30)(4 31)(5 32)(6 33)(7 34)(8 28)(9 22)(10 23)(11 24)(12 25)(13 26)(14 27)(15 111)(16 112)(17 106)(18 107)(19 108)(20 109)(21 110)(36 44)(37 45)(38 46)(39 47)(40 48)(41 49)(42 43)(50 67)(51 68)(52 69)(53 70)(54 64)(55 65)(56 66)(57 75)(58 76)(59 77)(60 71)(61 72)(62 73)(63 74)(78 91)(79 85)(80 86)(81 87)(82 88)(83 89)(84 90)(92 99)(93 100)(94 101)(95 102)(96 103)(97 104)(98 105)
G:=sub<Sym(112)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,47)(2,48)(3,49)(4,43)(5,44)(6,45)(7,46)(8,110)(9,111)(10,112)(11,106)(12,107)(13,108)(14,109)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28)(29,40)(30,41)(31,42)(32,36)(33,37)(34,38)(35,39)(50,74)(51,75)(52,76)(53,77)(54,71)(55,72)(56,73)(57,68)(58,69)(59,70)(60,64)(61,65)(62,66)(63,67)(78,102)(79,103)(80,104)(81,105)(82,99)(83,100)(84,101)(85,96)(86,97)(87,98)(88,92)(89,93)(90,94)(91,95), (1,35)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,21)(9,15)(10,16)(11,17)(12,18)(13,19)(14,20)(22,111)(23,112)(24,106)(25,107)(26,108)(27,109)(28,110)(36,44)(37,45)(38,46)(39,47)(40,48)(41,49)(42,43)(50,67)(51,68)(52,69)(53,70)(54,64)(55,65)(56,66)(57,75)(58,76)(59,77)(60,71)(61,72)(62,73)(63,74)(78,95)(79,96)(80,97)(81,98)(82,92)(83,93)(84,94)(85,103)(86,104)(87,105)(88,99)(89,100)(90,101)(91,102), (1,102)(2,103)(3,104)(4,105)(5,99)(6,100)(7,101)(8,71)(9,72)(10,73)(11,74)(12,75)(13,76)(14,77)(15,61)(16,62)(17,63)(18,57)(19,58)(20,59)(21,60)(22,65)(23,66)(24,67)(25,68)(26,69)(27,70)(28,64)(29,85)(30,86)(31,87)(32,88)(33,89)(34,90)(35,91)(36,92)(37,93)(38,94)(39,95)(40,96)(41,97)(42,98)(43,81)(44,82)(45,83)(46,84)(47,78)(48,79)(49,80)(50,106)(51,107)(52,108)(53,109)(54,110)(55,111)(56,112), (1,50,47,74)(2,51,48,75)(3,52,49,76)(4,53,43,77)(5,54,44,71)(6,55,45,72)(7,56,46,73)(8,82,110,99)(9,83,111,100)(10,84,112,101)(11,78,106,102)(12,79,107,103)(13,80,108,104)(14,81,109,105)(15,93,22,89)(16,94,23,90)(17,95,24,91)(18,96,25,85)(19,97,26,86)(20,98,27,87)(21,92,28,88)(29,68,40,57)(30,69,41,58)(31,70,42,59)(32,64,36,60)(33,65,37,61)(34,66,38,62)(35,67,39,63), (8,28)(9,22)(10,23)(11,24)(12,25)(13,26)(14,27)(15,111)(16,112)(17,106)(18,107)(19,108)(20,109)(21,110)(50,74)(51,75)(52,76)(53,77)(54,71)(55,72)(56,73)(57,68)(58,69)(59,70)(60,64)(61,65)(62,66)(63,67)(78,95)(79,96)(80,97)(81,98)(82,92)(83,93)(84,94)(85,103)(86,104)(87,105)(88,99)(89,100)(90,101)(91,102), (1,35)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,28)(9,22)(10,23)(11,24)(12,25)(13,26)(14,27)(15,111)(16,112)(17,106)(18,107)(19,108)(20,109)(21,110)(36,44)(37,45)(38,46)(39,47)(40,48)(41,49)(42,43)(50,67)(51,68)(52,69)(53,70)(54,64)(55,65)(56,66)(57,75)(58,76)(59,77)(60,71)(61,72)(62,73)(63,74)(78,91)(79,85)(80,86)(81,87)(82,88)(83,89)(84,90)(92,99)(93,100)(94,101)(95,102)(96,103)(97,104)(98,105)>;
G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,47)(2,48)(3,49)(4,43)(5,44)(6,45)(7,46)(8,110)(9,111)(10,112)(11,106)(12,107)(13,108)(14,109)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28)(29,40)(30,41)(31,42)(32,36)(33,37)(34,38)(35,39)(50,74)(51,75)(52,76)(53,77)(54,71)(55,72)(56,73)(57,68)(58,69)(59,70)(60,64)(61,65)(62,66)(63,67)(78,102)(79,103)(80,104)(81,105)(82,99)(83,100)(84,101)(85,96)(86,97)(87,98)(88,92)(89,93)(90,94)(91,95), (1,35)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,21)(9,15)(10,16)(11,17)(12,18)(13,19)(14,20)(22,111)(23,112)(24,106)(25,107)(26,108)(27,109)(28,110)(36,44)(37,45)(38,46)(39,47)(40,48)(41,49)(42,43)(50,67)(51,68)(52,69)(53,70)(54,64)(55,65)(56,66)(57,75)(58,76)(59,77)(60,71)(61,72)(62,73)(63,74)(78,95)(79,96)(80,97)(81,98)(82,92)(83,93)(84,94)(85,103)(86,104)(87,105)(88,99)(89,100)(90,101)(91,102), (1,102)(2,103)(3,104)(4,105)(5,99)(6,100)(7,101)(8,71)(9,72)(10,73)(11,74)(12,75)(13,76)(14,77)(15,61)(16,62)(17,63)(18,57)(19,58)(20,59)(21,60)(22,65)(23,66)(24,67)(25,68)(26,69)(27,70)(28,64)(29,85)(30,86)(31,87)(32,88)(33,89)(34,90)(35,91)(36,92)(37,93)(38,94)(39,95)(40,96)(41,97)(42,98)(43,81)(44,82)(45,83)(46,84)(47,78)(48,79)(49,80)(50,106)(51,107)(52,108)(53,109)(54,110)(55,111)(56,112), (1,50,47,74)(2,51,48,75)(3,52,49,76)(4,53,43,77)(5,54,44,71)(6,55,45,72)(7,56,46,73)(8,82,110,99)(9,83,111,100)(10,84,112,101)(11,78,106,102)(12,79,107,103)(13,80,108,104)(14,81,109,105)(15,93,22,89)(16,94,23,90)(17,95,24,91)(18,96,25,85)(19,97,26,86)(20,98,27,87)(21,92,28,88)(29,68,40,57)(30,69,41,58)(31,70,42,59)(32,64,36,60)(33,65,37,61)(34,66,38,62)(35,67,39,63), (8,28)(9,22)(10,23)(11,24)(12,25)(13,26)(14,27)(15,111)(16,112)(17,106)(18,107)(19,108)(20,109)(21,110)(50,74)(51,75)(52,76)(53,77)(54,71)(55,72)(56,73)(57,68)(58,69)(59,70)(60,64)(61,65)(62,66)(63,67)(78,95)(79,96)(80,97)(81,98)(82,92)(83,93)(84,94)(85,103)(86,104)(87,105)(88,99)(89,100)(90,101)(91,102), (1,35)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,28)(9,22)(10,23)(11,24)(12,25)(13,26)(14,27)(15,111)(16,112)(17,106)(18,107)(19,108)(20,109)(21,110)(36,44)(37,45)(38,46)(39,47)(40,48)(41,49)(42,43)(50,67)(51,68)(52,69)(53,70)(54,64)(55,65)(56,66)(57,75)(58,76)(59,77)(60,71)(61,72)(62,73)(63,74)(78,91)(79,85)(80,86)(81,87)(82,88)(83,89)(84,90)(92,99)(93,100)(94,101)(95,102)(96,103)(97,104)(98,105) );
G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112)], [(1,47),(2,48),(3,49),(4,43),(5,44),(6,45),(7,46),(8,110),(9,111),(10,112),(11,106),(12,107),(13,108),(14,109),(15,22),(16,23),(17,24),(18,25),(19,26),(20,27),(21,28),(29,40),(30,41),(31,42),(32,36),(33,37),(34,38),(35,39),(50,74),(51,75),(52,76),(53,77),(54,71),(55,72),(56,73),(57,68),(58,69),(59,70),(60,64),(61,65),(62,66),(63,67),(78,102),(79,103),(80,104),(81,105),(82,99),(83,100),(84,101),(85,96),(86,97),(87,98),(88,92),(89,93),(90,94),(91,95)], [(1,35),(2,29),(3,30),(4,31),(5,32),(6,33),(7,34),(8,21),(9,15),(10,16),(11,17),(12,18),(13,19),(14,20),(22,111),(23,112),(24,106),(25,107),(26,108),(27,109),(28,110),(36,44),(37,45),(38,46),(39,47),(40,48),(41,49),(42,43),(50,67),(51,68),(52,69),(53,70),(54,64),(55,65),(56,66),(57,75),(58,76),(59,77),(60,71),(61,72),(62,73),(63,74),(78,95),(79,96),(80,97),(81,98),(82,92),(83,93),(84,94),(85,103),(86,104),(87,105),(88,99),(89,100),(90,101),(91,102)], [(1,102),(2,103),(3,104),(4,105),(5,99),(6,100),(7,101),(8,71),(9,72),(10,73),(11,74),(12,75),(13,76),(14,77),(15,61),(16,62),(17,63),(18,57),(19,58),(20,59),(21,60),(22,65),(23,66),(24,67),(25,68),(26,69),(27,70),(28,64),(29,85),(30,86),(31,87),(32,88),(33,89),(34,90),(35,91),(36,92),(37,93),(38,94),(39,95),(40,96),(41,97),(42,98),(43,81),(44,82),(45,83),(46,84),(47,78),(48,79),(49,80),(50,106),(51,107),(52,108),(53,109),(54,110),(55,111),(56,112)], [(1,50,47,74),(2,51,48,75),(3,52,49,76),(4,53,43,77),(5,54,44,71),(6,55,45,72),(7,56,46,73),(8,82,110,99),(9,83,111,100),(10,84,112,101),(11,78,106,102),(12,79,107,103),(13,80,108,104),(14,81,109,105),(15,93,22,89),(16,94,23,90),(17,95,24,91),(18,96,25,85),(19,97,26,86),(20,98,27,87),(21,92,28,88),(29,68,40,57),(30,69,41,58),(31,70,42,59),(32,64,36,60),(33,65,37,61),(34,66,38,62),(35,67,39,63)], [(8,28),(9,22),(10,23),(11,24),(12,25),(13,26),(14,27),(15,111),(16,112),(17,106),(18,107),(19,108),(20,109),(21,110),(50,74),(51,75),(52,76),(53,77),(54,71),(55,72),(56,73),(57,68),(58,69),(59,70),(60,64),(61,65),(62,66),(63,67),(78,95),(79,96),(80,97),(81,98),(82,92),(83,93),(84,94),(85,103),(86,104),(87,105),(88,99),(89,100),(90,101),(91,102)], [(1,35),(2,29),(3,30),(4,31),(5,32),(6,33),(7,34),(8,28),(9,22),(10,23),(11,24),(12,25),(13,26),(14,27),(15,111),(16,112),(17,106),(18,107),(19,108),(20,109),(21,110),(36,44),(37,45),(38,46),(39,47),(40,48),(41,49),(42,43),(50,67),(51,68),(52,69),(53,70),(54,64),(55,65),(56,66),(57,75),(58,76),(59,77),(60,71),(61,72),(62,73),(63,74),(78,91),(79,85),(80,86),(81,87),(82,88),(83,89),(84,90),(92,99),(93,100),(94,101),(95,102),(96,103),(97,104),(98,105)]])
154 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | ··· | 2K | 4A | 4B | 4C | 4D | 4E | ··· | 4J | 7A | ··· | 7F | 14A | ··· | 14R | 14S | ··· | 14AD | 14AE | ··· | 14BN | 28A | ··· | 28X | 28Y | ··· | 28BH |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 7 | ··· | 7 | 14 | ··· | 14 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 | 28 | ··· | 28 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | ··· | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 1 | ··· | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
154 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | ||||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C7 | C14 | C14 | C14 | C14 | C14 | C14 | C14 | D4 | C7×D4 | 2+ 1+4 | C7×2+ 1+4 |
kernel | C7×C22.29C24 | C7×C42⋊C2 | C7×C22≀C2 | C7×C4⋊D4 | C7×C4.4D4 | C7×C4⋊1D4 | D4×C2×C14 | C14×C4○D4 | C22.29C24 | C42⋊C2 | C22≀C2 | C4⋊D4 | C4.4D4 | C4⋊1D4 | C22×D4 | C2×C4○D4 | C2×C28 | C2×C4 | C14 | C2 |
# reps | 1 | 1 | 4 | 4 | 2 | 2 | 1 | 1 | 6 | 6 | 24 | 24 | 12 | 12 | 6 | 6 | 4 | 24 | 2 | 12 |
Matrix representation of C7×C22.29C24 ►in GL6(𝔽29)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 0 | 0 | 0 |
0 | 0 | 0 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 0 | 7 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
28 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
0 | 28 | 0 | 0 | 0 | 0 |
28 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 5 | 0 | 27 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 24 |
28 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 27 | 28 | 0 | 0 |
0 | 0 | 0 | 24 | 28 | 2 |
0 | 0 | 24 | 24 | 28 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 27 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 24 | 24 | 28 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 24 | 0 | 1 |
G:=sub<GL(6,GF(29))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[0,28,0,0,0,0,28,0,0,0,0,0,0,0,0,0,1,0,0,0,0,5,0,12,0,0,1,0,0,0,0,0,0,27,0,24],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,27,0,24,0,0,1,28,24,24,0,0,0,0,28,28,0,0,0,0,2,1],[1,0,0,0,0,0,0,28,0,0,0,0,0,0,1,27,0,24,0,0,0,28,0,24,0,0,0,0,28,28,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,24,0,0,0,0,1,0,0,0,0,0,0,1] >;
C7×C22.29C24 in GAP, Magma, Sage, TeX
C_7\times C_2^2._{29}C_2^4
% in TeX
G:=Group("C7xC2^2.29C2^4");
// GroupNames label
G:=SmallGroup(448,1318);
// by ID
G=gap.SmallGroup(448,1318);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-7,-2,-2,1597,792,4790,1227,3363]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^7=b^2=c^2=d^2=f^2=g^2=1,e^2=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,e*d*e^-1=g*d*g=b*d=d*b,f*e*f=b*e=e*b,b*f=f*b,b*g=g*b,f*d*f=c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations